2 1 Ju l 2 00 8 EQUIVARIANT CW - COMPLEXES AND THE ORBIT CATEGORY

نویسندگان

  • IAN HAMBLETON
  • SEMRA PAMUK
چکیده

We give a general framework for studying G-CW complexes via the orbit category. As an application we show that the symmetric group G = S 5 admits a finite G-CW complex X homotopy equivalent to a sphere, with cyclic isotropy subgroups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 8 EQUIVARIANT CW - COMPLEXES AND THE ORBIT CATEGORY

We give a general framework for studying G-CW complexes via the orbit category. As an application we show that the symmetric group G = S 5 admits a finite G-CW complex X homotopy equivalent to a sphere, with cyclic isotropy subgroups.

متن کامل

Equivariant Cw-complexes and the Orbit Category

We give a general framework for studying G-CW complexes via the orbit category. As an application we show that the symmetric group G = S5 admits a finite G-CW complex X homotopy equivalent to a sphere, with cyclic isotropy subgroups.

متن کامل

Equivariant Homotopy Theory

In this note we announce an obstruction theory for extending (continuous) equivariant maps defined on a certain class of G-spaces, where G is a compact Lie group. The details of this work will be published elsewhere. Our results barely touch upon the attendant problem of providing techniques that would serve in practice for the computation of the obstruction groups. In general this last problem...

متن کامل

2 1 Ju n 20 09 EQUIVARIANT BUNDLES AND ISOTROPY REPRESENTATIONS

We introduce a new construction, the isotropy groupoid, to organize the orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split Γ-CW complexes X can be effectively classified by means of representations of their isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all edge stabilizers toral subgroups of Γ, we obtain a purely combinato...

متن کامل

Eqüivariant Cohomology Theories

Throughout this note G denotes a discrete group. A G-complex is a CPP-complex on which G acts by cellular maps such that the fixed point set of any element of G is a subcomplex. On the category of pairs of G-complexes and equivariant homotopy classes of maps, an equivariant cohomology theory is a sequence of contravariant functors 3C into the category of abelian groups together with natural tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008